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Abstract 

The present study investigates the fluid flow and heat transfer characteristics occurring during the melting process due to 
a stretching / shrinking surface in micropolar fluid. A uniform magnetic field is applied normally to the surface. The 
governing equations representing fluid flow were transformed into nonlinear ordinary differential equations using similarity 
transformation. The equations thus obtained were solved numerically using the Runge–Kutta-Fehlberg fourth-fifth order 
method with shooting technique. The effects of the magnetic parameter on the fluid flow, couple stress coefficient and heat 
transfer characteristics, are illustrated graphically and discussed in detail. Significant changes were observed in the fluid 
flow, couple stress coefficient and heat transfer with respect to magnetic parameter. 
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1. Introduction  

The micropolar fluids are those which contain micro-
constituents that can undergo rotation, the presence of 
which can affect the hydrodynamics of the flow. It has 
many practical applications, like, for example, analyzing 
the behaviour of exotic lubricants, colloidal suspensions, 
solidification of liquid crystals, extrusion of polymer 
fluids, cooling of metallic plate in a bath, animal blood, 
body fluids, among others. Eringen [1] introduced the 
theory of micropolar fluids that is capable to describe 
those fluids by taking into account the effect arising from 
local structure and micromotions of the fluid elements. 
Gamal and Rahman [2] studied the effect of MHD on thin 
films of a micropolar fluid and they observed that the 
rotation of the microelements at the boundary increase the 
velocity when compared with the case when there is no 
rotation at the boundary. Das [3] investigated the effect of 
the first order chemical reaction and thermal radiation on 
hydro-magnetic free convection heat and mass transfer 
flow of a microplar fluid through a porous medium. Satya 
Naraya et al. [4] investigated the effects of Hall current 
and radiation absorption on MHD free convection mass 
transfer flow of a micropolar fluid in a rotating frame of 
reference. Srinivasacharya [5] analyzed the heat and mass 
transfer characteristic of the forced convection on a 
vertical wall temperature and concentration in a doubly 
stratified micropolar fluid. Das [6] studied the effect of 
partial slip on steady boundary layer stagnation point flow 
of an electrically conducting micropolar fluid impinging 

normally through a shrinking sheet in the presence of a 
uniform transverse magnetic field. The unsteady MHD 
boundary layer flow of a micropolar fluid near the 
stagnation point of a two-dimensional plane surface 
through a porous medium was studied by Nadeem et al. 
[7]. Ishak et al. [8] investigated the heat transfer over a 
stretching surface with variable heat flux in micropolar 
fluid. Wang [9] investigated the shrinking flow where the 
velocity of boundary layer moves toward a fixed point and 
he found an exact solution of Navier-Stokes equations. A 
good list of references for micropolar fluids is available in 
Łukaszewicz [10]. Tien and Yen [11] investigated the 
effect of melting on forced convection heat transfer 
between a melting body and surrounding fluid. Epstein and 
Cho [12] analyzed the melting heat transfer of the steady 
laminar flows over a flat plate. The steady laminar 
boundary layer flow and heat transfer from a warm, 
laminar liquid flow to a melting surface moving parallel to 
a constant free stream has been studied by Ishak et al. [13]. 
Rosali et al. [14] studied micropolar fluid flow towards a 
permeable stretching /shrinking sheet in a porous medium 
numerically. Yacob et al. [15] investigated a model to 
study the heat transfer characteristics occurring during the 
melting process due to a stretching / shrinking sheet and 
they studied the effects of the material parameter, melting 
parameter and the stretching /shrinking parameter on the 
velocity, temperature, skin friction coefficient and the 
local Nusselt number. Cheng and Lin [16] analyzed the 
melting effect on transient mixed convective heat transfer 
from a vertical plate in a liquid saturated porous medium. 
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In the present work, we consider the boundary layer 
stagnation-point flow and melting heat transfer of a MHD 
micropolar fluid towards a stretching / shrinking surface. 
To the best of our knowledge, this problem has not been 
considered before, so that the results are new.  

2. Mathematical formulation 

 
Figure 1: Flow configuration and Coordinate system                

The graphical model of the problem is given along with 
flow configuration and coordinate system. The system 
deals with two dimensional stagnation point steady flow of 
micropolar fluids towards a stretching / shrinking surface 
and subject to a constant transverse magnetic field B0. The 
velocity of the external flow is ue (x) = ax and the 
velocity of the stretching surface is uw (x) = cx, where a 
is a positive constant and c is a positive (stretching 
surface) or a negative (shrinking surface) constant, x is the 
coordinate measured along the surface. It is also assumed 
that the temperature of the melting surface and free stream 
condition is Tm and T∞,, where T∞ > Tm. The viscous 
dissipation and the heat generation or absorption has 
assumed to be negligible. Under these assumptions, the 
governing equations representing flow are as follows: 
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here u and v are the velocity component along the x and 
y axis, respectively. Further, µ is dynamic viscosity, k is 
vortex viscosity, σ is electrical conductivity of the fluid, ρ 
is fluid density, T is fluid temperature, j is micro inertia 
density, N is microrotation, γ is spin gradient viscosity, α 
is thermal diffusivity, κ is the thermal conductivity, λ is 
the latent heat of the fluid and Cs is the heat capacity of 
the solid surface. We note that n is a constant such that 0 ≤ 
n ≤ 1. The case when n = 0, is called strong concentration 
which indicates that no microtation near the wall. In case 
n = 1 / 2 it indicates that the vanishing of anti-symmetric 
part of the stress tensor and denote weak concentration and 
the case n = 1 is used for the modeling of turbulent 
boundary layer flows by Yacob et al. [15].   
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The total spin N reduces to the angular velocity.  

3. Problem solution 

Equations (2) - (4) can be transformed into a set of 
nonlinear ordinary differential equations by using the 
following similarity variables: 
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The transformed ordinary differential equations are:  

( ) ( )21 ''' '' 1 ' ' 1 ' 0K f ff f Kg M f+ + + − + + − =   (7) 

( ) ( )1 / 2 '' ' 'g K 2 '' 0K g fg f g f+ + − + + =   (8) 

'' Pr ' 0fθ θ+ =                                            (9) 

where primes denote differentiation with respect to η  
and Pr = υ/α  is Prandtl number. The boundary conditions 
(5) become: 

'(0)f ε= , ( ) ( )0 '' 0g nf= − , 

( ) ( )Pr 0 ' 0 0f mθ+ = , ( )0 0θ =                (10) 

( )' 1f ∞ = , ( ) 0g ∞ = , ( ) 1θ ∞ = . 
where /c aε = is the stretching (ε > 0) or shrinking 

(ε < 0) parameter, m is the dimensionless melting 
parameter and M is magnetic parameter which are defined 
as:  
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The physical parameters of interest are the skin friction 
coefficient Cf , local Couple stress coefficient Cm  and the 
local Nusselt number Nux' which are defined as:  
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where τw, cw  and  qw are the surface shear stress, 
the local couple stress  and the surface heat flux 
respectively, which are given by: 
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hence using (6), we get: 

( )1/2Re 1 1 ''(0)x fC n K f= + −   ,
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( )1/2Re ' 0x xNu θ− = −    

where ( )Re /x eu x x υ=  is the local Reynolds 

number. 

4. Results and discussion 

The transformed equations (7) - (9), subject to 
boundary conditions (10), were solved numerically using 

the Runge-Kutta-Fehlberg fourth-fifth order method with 
shooting technique to obtain the missing values of f " (0), 
g'(0) and θ ' (0) for some values of the magnetic 
parameter M, micropolar parameter K, melting parameter  
m  and the stretching / shrinking parameter ε, while the 
Prandtl number Pr is fixed to unity and we take n=0.5 
(weak concentration). 

In order to validate the numerical results obtained, we 
compared our results with those reported by Ishak et al. 
[8], Wang [9], and Yacob et al. [15], as shown in Table 1; 
and they are found to be in a favorable agreement. 

Figures 2, 3 and 4 show the variations of the skin 
friction coefficient f " (0), the local couple stress 
coefficient g ' (0) and the local Nusselt number  - θ' (0), 
respectively with ε for different value of M when m=1, 
K=1. It is also seen from these figures that for the 
shrinking case (ε < 0), the solution exists up to a critical 
value of ε (say εc) beyond which no solution exists. The 
values of  f " (0) are positive when ε < 1, and become 
negative when ε > 1. Physically, positive value of f " (0) 
means the fluid exerts a drag force on the solid surface and 
negative value means the solid surface exerts a drag force 
on the fluid. The zero skin friction when ε = 1, since for 
this case the stretching velocity is equal to the free stream 
velocity. However, for this case, the heat transfer rate at 
the surface -  θ' (0) ≠ 0 means there is a heat transfer 
between the fluid-solid interfaces (even when the friction 
is zero). The couple stress coefficient g'(0) (Figure 3) 
shows similar behaviour as that of skin friction coefficient 
for the variation of the magnetic parameter M with the 
Stretching parameter ε. The negative value of -  θ' (0), 
presented in Figure 4, shows that the heat is transferred 
from the warm fluid to cool solid surface. It is evident 
from Table 2 and Figure 2 that an increase in magnetic 
parameter M leads to a decrease in the value of  f " (0) 
absolute sense. It is clear form Table 2 and Figure 3 that 
the value of local couple stress coefficient g'(0) decreases 
with the increase in the value of magnetic parameter M for 
ε < 1, whereas the value of local couple stress coefficient 
g'(0) increases with increasing value of magnetic 
parameter M for ε > 1. This result in the decreasing 
manner of the heat transfer rate at the fluid-solid interface 
- θ' (0) for ε < 1, but opposite behaviours are observed 
for ε > 1. 

It is observed from velocity profiles f '(η) in Figure 5 
that the value of f '(η) decreases as M increases and from 
the angular velocity profiles g(η) in Figure 6 show that the 
value of g(η) initially increases as M increases and then 
changing the behaviour for large η the value of g(η) 
decreases with M, thus due to the increase in magnetic 
parameter M the boundary layer thickness increases. For 
temperature (Figure 7), the change in magnetic parameter 
M there is a small change in the temperature θ(η). 
Consequently, thermal boundary layer undergoes 
negligible change with M.  Finally, from all the figures 
(Figures 5–9) above, it can be easily seen that the far field 
boundary conditions are satisfied asymptotically and it 
signifies the correctness of the numerical scheme used. 
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Table 1. Comparison between f ''(0) and - θ'(0) calculated by the present method, Ishak et al. [8], Wang [9] and Yacob et al. 
[15] for various values of m, ε, K when M=0. 

                    
M 

                     
ɛ 

                      
M 

                
K Ishak et al. [8] Wang [9]     Yacob et al. [15]           Present Result 

    
    f ''(0)   f ''(0)    f ''(0)    -θ′(0)      f ''(0)       -θ′(0) 

 
 0  0 0   1.2326 1.232588 1.232588 -0.570465 1.232588 -0.570466 

   
1 

  
1.006404 -0.544535 1.006404 -0.544535 

  
1 0 

  
1.037003 -0.361961 1.037003 -0.361962 

0 
  

1 
  

0.879324 -0.347892 0.879324 -0.347892 

 
0.5 0 0 

 
 0.7133 0.713295 -0.692064 0.713295 -0.692065 

   
1 

  
0.582403 -0.680176 0.582403 -0.680176 

  
1 0 

  
0.59909 -0.438971 0.59909 -0.438971 

   
1 

  
0.506342 -0.432443 0.506342 -0.432443 

 

Table 2  The values of Skin friction coefficient  f ''(0), local couple stress coefficient  g ' (0) and local nusselt number 
 –  θ ' =(0) for various values of M, ε when m=1 and K=1. 

M ɛ f′′(0) g′(0) - θ′(0) 

0 0.75 0.26818 0.10379 -0.470624 

0.5 0.75 0.23458 0.086155 -0.468501 

1 0.75 0.19584 0.06638 -0.466002 

0 1.5 -0.61692 -0.29904 -0.572001 

0.5 1.5 -0.5596 -0.26514 -0.574801 

1 1.5 -0.49625 -0.22813 -0.57793 

0.5 - 0.25 0.76177 0.11516 -0.27859 

0.5 -0.5 0.72995 0.03944 -0.27859 

1 -0.25 0.3965 -0.01038 -0.23432 

1 -0.5 0.136 -0.09535 -0.14615 
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Figure2. Skin friction coefficient f ''(0) with ε for several value of 
M when m=1, K=1 
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Figure3.  Local Couple stress coefficient g'(0)  with ε for several 
value of M when m = 1, K = 1
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Figure 4. Heat transfer coefficient -θ'(0) with ε for several value 

of M when m=1, K= 1. 
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Figure 5. Velocity profiles f '(η) for several value of M when 

m=1, K=1and ε =0.75 
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Figure  6.  Angular velocity profiles g(η) for several value of M 

when m=1, K=1and ε = 0.75 
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Figure 7. Temperature profiles θ(η) for several value of M when 

m=1, K=1and ε = 0.75 
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Figure 8. Velocity profile f '(η) for different values of ε 

when M=0.5, K=1 and m=1. 
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Figure 9. Temperature profile θ(η) for different value of ε when 

M=0.5, K=1 and m=1
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5. Conclusions 

We have studied the effects of the magnetic parameter 
on skin friction coefficient, couple stress coefficient and 
local Nusselt number (which represents the heat transfer 
rate at the surface) for the steady laminar boundary layer 
stagnation point flow and heat transfer from a warm 
micropolar fluid to a melting solid surface of the same 
material. It has been found that the skin friction 
coefficient, the couple stress coefficient and the heat 
transfer coefficient decreases with increase in magnetic 
parameter. 
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